Condensed Matter Physics PROTON NMR RELAXATION STUDY OF CsHSO₄ Maria G. Compton and D. Blane Baker* William Jewell College Campus Box 1130 500 College Hill Liberty, MO 64068 Many solid acid systems, including CsHSO₄, exhibit superprotonic phase transitions in which their hydrogen ion conductivities increase by several orders of magnitude at temperatures between 50 and 150° C. Technologically, enhanced hydrogen ion conductivity is important for the development of electrolytes for fuel cells. In order to study this transition in CsHSO₄, proton spin-spin relaxation times have been measured from 37 to 160° C. NMR relaxation theory predicts the presence of two T₂ relaxation regimes (rigid lattice and motionally narrowed regimes). Within this model, atomic motions are thermally activated and can be characterized by a single correlation time at each temperature. In the rigid lattice regime, motions are too slow to average dipoledipole interactions on the NMR time scale, thus, T₂ is essentially constant. In the motionally narrowed regime atomic motions tend to average local magnetic fields to zero; thus, as the rate of atomic motion increases, T₂ increases proportionally. In our experiments, T₂'s are nearly constant (100 us) over the temperature range from 37 to 100° C, indicating hydrogen motions are effectively frozen out (rigid lattice regime). In the regime of the superprotonic phase transition (~140° C). T₂ increases dramatically (up to approximately 250 times its low temperature value). A model to explain the results in view of hydrogen ion conductivity is presented.